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Abstract—We investigate the numerical convergence proper- 48 cm
ties of two-dimensional (2-D) and three-dimensional (3-D) finite-
difference time-domain (FDTD) models of the BSD-2000 Sigma-
60 annular phased array used for deep hyperthermia. The FDTD
modeling data indicate unexpected physical phenomena for the phantom
case of Sigma-60 excitation of an elliptical tissue phantom em-
bedded in a circular water bolus. These phenomena include:

1) high-Q energy storage; 2) electromagnetic (EM) mode flip- Y
ping within the water bolus/phantom; and 3) whispering-gallery L
transmission of energy to the opposite side of the phantom x z

relative to the exciting dipole pair. We conclude that these
phenomena substantially impact the FDTD numerical modeling .
of this system, and further conclude that the whispering-gallery d'po!e

effect can impact clinical applications of the Sigma-60. / applicator

Index Terms—Electromagnetic fields, FDTD, hyperthermia,
modeling.
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. INTRODUCTION Point A

BSTANTIAL literature has arisen regarding electro-
S;Juagnetic (EM) hyperthermia, i.e., the application of EM Point B
energy of various frequencies to heat cancerous tumors. Exam-
ples include: 1) superficial waveguide applicators for surface
tumors [1]; 2) interstitial probes to heat tumors accessible
via catheter [1], [2]; and c3) annular phased-array (APA)
applicators used to heat deep tumors [2]. An example of
a commercially available EM deep hyperthermia unit is the
BSD-2000 with the Sigma-60 APA, shown schematically in
Fig. 1. This system has four RF amplifiers, each driving a pair
of 44-cm-long flared dipole antennas radiating in the frequency
range of 60-120 MHz. The eight dipole antennas are equally
spaced around a 60-cm-diameter clear plastic annulus, and are ()
phased to provide constructive interference of the energy ded 1. Schematic representation of the BSD-2000 Sigma-60 applicator
Lo . . and the CDRH phantom. The eight dipole applicators are equally spaced
inside the body of a patient centered in the annulus. Energ,nd a 60-cm clear plastic annulus. The phantom has a 1-cm-thick rigid
is coupled from the antennas to the patient via a water boliasequivalent shell surrounding a muscle-equivalent gel. (a) Longitudinal
filling the space between the plastic annulus and the patierfew- (b) Transverse cross section-at= 0.

The primary difficulty in clinical application of the Sigma-
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a number of papers involving FDTD simulation of EM-wavedn the second experimental case, the Sigma-60 heats only
interactions with biological systems and RF and microwavane side of the phantom. Power is applied only to the left
hyperthermia for cancer treatment; early examples inclugeair of dipoles while the remaining antennas are permitted to
[71-[15]. In this paper, we describe specific unexpected phyisat in an unexcited manner. All numerical calculations were
ical phenomena for the Sigma-60 APA revealed by our FDTPerformed on a single processor of the CRAY Y-MP. Typical
modeling. These phenomena include delayed convergenceuns took approximately 400 s for the 2-D model and 6000 s
the sinusoidal steady state due to higtenergy storage, EM- for the 3-D model.
mode flipping, and the whispering-gallery effect. We also In the course of our computational and experimental investi-
describe an experimental validation obtained in the hyperthgations, we observed three interesting physical phenomena not
mia facility at Northwestern Memorial Hospital. We concludgreviously reported. We discuss these results in the following
that the physical factors discussed in this paper should sections.
accounted in future FDTD simulations of structures similar to
the Sigma-60 APA, and perhaps more importantly, one of these
factors (the whispering-gallery effect) should be accounted in ~ |ll. DELAYED CONVERGENCEDUE TO HIGH @
clinical applications to prevent unwanted heating of healthy o major concern when applying the FDTD method is
tissues far from the excited dipoles. the computer time required to compute the desired fields.
One factor affecting the computation time is t&e(ratio of
stored to dissipated energy) of the system. Higlsystems
Il. FDTD MODELS OF THECDRH FHANTOM require prolonged time stepping to reach the desired sinusoidal
Our simulations involved a phantom developed by th&teady state or late-time impulse response, or the use of linear
Center for Devices and Radiological Health (CDRH) of thprediction or similar means to extrapolate a narrowly time-
U.S. FDA [3]. Fig. 1(b) shows the position of the phantorwindowed impulse response [17].
relative to the Sigma-60 antenna-array elements at the mid-The literature indicates that the sinusoidal steady state is
plane (z = 0) of the array in Fig. 1(a). This cross sectiommeached within 2—6 RF cycles (sinusoidal periods) of the excit-
is designated the—y plane. The phantom is a 57-cm-longng field for a broad range of FDTD models of the interaction
elliptical inhomogeneous dielectric cylinder with major andf EM waves with biological tissues [7]-[15]. However, in
minor axes of 32 and 22 cm, respectively. A 1-cm-thickhis work involving the Sigma-60 APA, comparison of the
rigid epoxy shell with the electrical properties of fat.(= computed electric-field§-field) amplitude distribution in the
10,0 = 0.01 S/m) encloses a gel material having the electricahantom during RF cycles 1-15 reveals that no two successive
properties of muscles{ = 65,0 = 0.90 S/m) at the frequency distributions are similar. This implies that the sinusoidal steady
of interest [16]. state is not reached within the first 15 RF cycles. In fact, at
The two-dimensional (2-D) FDTD model assumes that theld 0 MHz, the 2-D FDTD model requires more than 100 RF
is no change of either geometry or excitation in the cycles to converge.
direction from that depicted in Fig. 1(b). The Sigma-60 APA Investigation of the physical convergence of the model
is positioned about the center of the grid, Point A (0, 0). Allequires monitoring the change of the compufedield am-
grid cells within a 30-cm-radius circle centered at (0, 0) aggitude at several locations in the phantom during progressive
assigned the electrical properties of water, fat, or muscle t®e-stepping. Two of these observation points in the 2-D
appropriate to the phantom and water-bolus geometry showmiodel are designated and B in Fig. 1(b), located at co-
Fig. 1(b). All remaining grid cells are assigned the propertiesdinates (0, 0) and«{15 cm, 0), respectively. These points
of air except for eight points that are assigned the propertiepresent the observed extremes of the convergence properties
of metal to represent the dipoles of the Sigma-60. of the FDTD model at 110 MHz. That is, the-field amplitude
The three-dimensional (3-D) FDTD model incorporates &t PointA converges in the minimum number of computed RF
significant parts of the Sigma-60 and CDRH phantom, agcles, while the£-field amplitude at Point3 converges in
shown in Fig. 1(a) and (b). The eight exciting dipoles aréhe maximum number of RF cycles. All other locations within
modeled as thin wires excited at the center gap with the phantom converge after Poidtor before PointB.
sinusoidal electric-field source. A grid resolution of 1 cm is Fig. 2 illustrates the results of the convergence studies for
used. As a result, the Sigma-60 with phantom spans a gtitlo-MHz excitation of the 2-D model at Point$ and B.
volume of 60x 60 x 58 cells in thez-, -, andz-directions, From this figure, we see that the comput@dield amplitude
respectively. at centrally located Poind reached the sinusoidal steady state
Our work focuses on FDTD modeling of two treatmentvithin about the first ten RF cycles. However, the computed
protocols at 110 MHz for which we have generated expek-field amplitude at Point3 near the edge of the phantom
imental phantom data. For the first experimental case, thas large oscillations extending over hundreds of RF cycles.
Sigma-60 heats an imaginary tumor centered at coordinatess clear that data obtained for Poift before RF cycle 200
(0, 0, 0). To model this central-heating case using FDTIx not even close to the sinusoidal steady state.
we simulate equal-magnitude and zero-phase 110-MHz sinufig. 3(a) and (b) illustrates, respectively, thefield ampli-
soidal excitation applied to all applicators. This is in accortlide responses at Points and B for sinusoidal excitations
with the protocol assigned by the BSD-2000 software whext 10-MHz increments in the range 70-120 MHz. As seen
constructive interference is desired at the center of the APA. Fig. 3(a), centrally located Poimd reaches the sinusoidal
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Fig. 3. Electric-field amplitude versus RF cycle number for the 2-D FDTI{)

reaches the steady state within the first 15 RF cycles for all fre-
guencies shown. However, in Fig. 4(b), thefield amplitude

at peripherally located Poirf8 oscillates in a manner similar

0 the 2-D results shown in Fig. 3(b). Whereas the 2-D results

model of Fig. 1(b) for 70-, 80-, 90-, 100-, 110-, and 120-MHz equal-magnitud@dicate a resonance around 110 MHz, the 3-D resullts indicate
and zero-phase excitation of the annular phased array. (a) Observation Ptit the resonance is shifted to approximately 120 MHz. At

A. (b) Observation PoinB, showing pronounced oscillatory behavior at 11

MHz.

%his frequency, the largest oscillation and slowest convergence

at the periphery of the phantom is noted. Again, a shift of
only 10 MHz shows greatly reduced amplitude oscillations

steady state within about 10 RF cycles for all of these frat PointB. At the worst case (120 MHz), more than 100 RF
guencies. However, Fig. 3(b) shows that peripherally locategicles must be time stepped to reach an approximate steady
Point B exhibits varying degrees of delayed convergence. Theate at all points. For the 110-MHz studies of this paper, time
slowest convergence for Poi? is at 110 MHz, where a stepping through approximately 60 RF cycles is sufficient for
pronounced oscillatory behavior is observed. Further, pertudsnvergence.
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Fig. 5. Distinct modal patterns of the-field observed within the phantom and water bolus of the 2-D model for 110-MHz equal-magnitude and zero-phase

excitation of the annular phased array. (a) After 5 RF cycles, (b) 45 cycles, (c) 85 cycles, and (d) 125 cycles.

IV. MODE FLIPPING NEAR RESONANCE Fig. 5 shows the two distinct modal patterns observed

Another unexpected effect—‘mode flipping’—is observefpr the 2-D model. Here, thet.-field distribution within
to occur near the 110- and 120-MHz resonances of the 2t phantom/bolus is plotted after 5 RF cycles [Fig. 5(a)],
and 3-D FDTD models for the central-heating configuratiof® cycles [Fig. 5(b)], 85 cycles [Fig. 5(c)], and 125 cycles
during the early sinusoidal cycles before convergence. THRG- 5(d)]. A color video of these data indicates a pronounced
is revealed by constructing a contour map of the spatilaysteresis—like effect wherein the modal pattern appears stable
distribution of theE-field within the phantom and water-bolusover many RF cycles, but then quickly flips to the opposite
structure at the completion of each RF cycle of time steppingfate over just a few cycles. Additional analysis reveals that
We observe that this spatial distribution alternates betwetitis mode flipping is periodic with one complete repetition
two completely different modes before ultimate convergeneach (approximately) 80 RF cycles. 3-D computations indicate
to the sinusoidal steady state. similar mode flipping. However, because of the large computer



REUTERet al: FDTD MODELING OF SIGMA-60 DEEP HYPERTHERMIA APPLICATOR 317

time needed to time-step through the hundreds of RF cycles
required to discern the oscillations of the modal pattern at
120 MHz (see Fig. 4(b), 120-MHz data) we report only the

2-D mode-flipping results.

V. WHISPERINGGALLERY EFFECT NEAR RESONANCE

The final unexpected phenomenon reported here is a
“whispering-gallery” effect that occurs when only a single
dipole pair of the Sigma-60 is excited. Excitation of a
single dipole pair should heat only the side of the phantom
immediately adjacent to that pair. However, apparently due to
geometrical reflection effects within the circular water bolus,
both the 2-D and 3-D FDTD models show that significant EM
energy is coupled to the opposite side of the phantom relative
to the exciting dipole pair. These results are so intriguing
that additional physical experiments probing the phenomenon
have been performed at the Northwestern Memorial Hospital

Hyperthermia Facility. Fig. 6. Photograph of the LED sensing matrix in the midplane of the
phantom with 235 W of 110-MHz RF power applied to only the left pair

A. Details of the Physical Experiment and Its Simulation of Sigma-60 applicator dipoles. Note the excitation of several LED’s at the
' right (opposite) side of the phantom.

We now describe the experimental validation of the FDTD
predictions of the whispering-gallery effect. The experiment An additional feature of the FDTD model of the LED
uses a specialized phantom employing a grid of light-emittinghantom (relative to earlier models of the CDRH phantom)
diodes (LED’s) [4]. This LED grid is placed into a saline phanis that the dielectric geometry accounts for the sagging of the
tom to directly visualize the applief-field pattern produced water bolus under the force of gravity. This sagging causes a
by the BSD Sigma-60. In addition to qualitatively mappingignificant up—down geometrical asymmetry.
the distribution of the penetrating field, quantitative data The simulated RF powef applied to each of the two
for this field are obtained by calibrating the turn-on potentidéft applicator dipoles of the Sigma-60 in the FDTD model
for the LED's. is calculated byP = VIcosf. Here, the terminal voltage
The LED phantom is an 82-cm-long hollow cylinder ofV, terminal current/, and relative phasé are obtained at the
elliptical cross section having major and minor axes of 3@pplicator—dipole center gap by implementing a Faraday’s Law
and 24 cm. The curved cylinder wall is made of 2-mm-thickontour integral of theé-field across the gap and an Ampere’s
red polyvinyl chloride (PVC), and the two end walls are madeaw contour integral of thef{-field curling around the gap
of clear PVC. Thus, the LED’s contained within the interiof18]. The E-field in the simulated Sigma-60 applicator dipole
of the cylinder can be directly viewed and photographegap is scaled to achieve a power level of 117.5 W, or a total
through the end walls. The phantom is filled with 3 g/L salinef 235 W for the pair of applicator dipoles. This simulated
(NaCl) solution to approximate the volume-averaged electriddF power is equivalent to that of the physical experiment
properties of human tissue at frequencies near 100 MHz( conducted at Northwestern Memorial Hospital.
77,0 = 0.55 S/m) [4]. A 3-mm-thick Plexiglas (acrylate) plate
of elliptical shape slightly smaller than the phantom’s crodd: Results
section forms a grid for 143 LED’s spaced at 2-cm intervals, Fig. 6 is a photograph of the embedded LED matrix under
which is placed at the midplarie = 0) of the saline phantom. conditions of 235 W applied to the left pair of Sigma-60
Each LED has its leads bent to form a 4.7-cm-long dipolpplicator dipoles. This figure clearly shows that there is LED
which is oriented perpendicular to the plane of the grid tiurn-on within the sensing matrix at the right (opposite) side of
detect the dominank’-field component. the phantom farthest away from the excited pair of applicator
An important feature of the FDTD model of the LEDdipoles.
phantom is its detailed simulation of all 143 LED’s and Fig. 7 depicts the corresponding FDTD predictions for the
associated dipoles. The literature indicates that the preseag@l (z-directed) E-field component in the plane of the
of these sensing devices significantly perturbs the ambidrED matrix. Contours of equak-field magnitude are plotted
E-field distribution [4]. This perturbation must be accountedround the LED locations. These contours are thresholded
in any valid model. In the present FDTD simulation, each LEBo that the only ones shown are those that surround LED’s
sensing device is modeled as a pair of thin 2.0-cm-long wirbaving predicted terminal voltages exceeding 1.2-V zero-to-
loaded by a lumped resistor-capacitor equivalent circuit for tpeak, the measured potential for light emission at 110 MHz.
LED [19]. As measured in our laboratory, the LED equivalerih this figure, increasing density of the contours denotes
circuit at 110 MHz consists of the parallel combination of greater LED terminal voltage and thus greater light-emission
902 resistor and a 48.2-pF capacitor. No LED nonlinearity imtensity. Thus, Fig. 7 visualizes the FDTD prediction of both
modeled. Adjacent sensing dipoles/LED’s are spaced at 2-the positions and the emitted light intensities of the lit LED’s
intervals in a planar rectangular matrix. within the phantom during RF excitation.
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Fig. 7. FDTD predictions for thé-field at the LED sensing matrix under

the conditions of Fig. 6. Contours of equétfield magnitude are shown for [8]
LED’s having predicted terminal voltages exceeding 1.2-V zero-to-peak. This
provides a visualization of both the position and emission intensity of the lit
LED’s within the phantom, and can be directly compared to Fig. 6.

[9]

Comparing Figs. 6 and 7, we see good agreement between
the FDTD model and the experimental results for light emis-

sion from the LED sensing matrix. The only discrepancy g0l
on the right side of the phantom where the FDTD model
somewhat underestimates the number of lit LED’s. We view

these results as a significant qualitative and quantitative expgi
imental validation of the overall FDTD simulation and, more

precisely, its prediction of a whispering-gallery effect. [12]

VI. DIScuUSSION AND CONCLUSIONS [13]

We reported 2-D and 3-D FDTD models of the BSD-2000
Sigma-60 annular-phased-array hyperthermia device. The P
sults indicate that previous published data for FDTD sim-
ulations of the Sigma-60 are probably not converged. Negs]
resonance, convergence to the sinusoidal steady state for the
elliptical phantom geometry requires literally hundreds of RF
cycles to be time-stepped. Away from resonance, the requiréél
number of RF cycles diminishes rapidly, but is still well in
excess of previously reported values.

In the course of the FDTD modeling, data have been
obtained indicating additional unexpected physical phenorH—
ena. For the case of Sigma-60 excitation of an elliptical
phantom embedded in a circular water bolus, these phenomena
include mode-flipping and a whispering-gallery effect that
causes heating on the far side of the phantom opposite to
that of the excited dipole pair. An experimental validation of
the whispering-gallery effect was presented. We believe tf
these physical phenomena can affect both the FDTD numeri
modeling and the clinical applications of the Sigma-60 AP/
Further critical evaluation of these issues is recommended.

[17]
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